# deint 0.0.3

Double Exponential Numerical Integration Library

To use this package, run the following command in your project's root directory:

Manual usage
Put the following dependency into your project's dependences section:

## Double Exponential Numerical Integration Library

This library provides a numerical integration method by Double Exponential (DE) formula.

On DE formula, a integration is approximated as Eq. (1),

<img src="https://latex.codecogs.com/gif.latex?(1)&space;\int{a}^{b}&space;f(x)&space;w(x)&space;dx&space;\approx&space;\int{ta}^{tb}&space;f(\phi(t))w(\phi(t))&space;\phi'(t)&space;dt&space;\approx&space;\sum{k=0}^{N-1}&space;f(xk)wk" title="(1) \int{a}^{b} f(x) w(x) dx \approx \int{ta}^{tb} f(\phi(t))w(\phi(t)) \phi'(t) dt \approx \sum{k=0}^{N-1} f(xk)wk" />

where

<img src="https://latex.codecogs.com/gif.latex?tk&space;=&space;\frac{tb&space;-&space;ta}{N-1}k&space;+&space;ta" title="tk = \frac{tb - ta}{N-1}k + ta" />, <img src="https://latex.codecogs.com/gif.latex?xk&space;=&space;\phi(tk)" title="xk = \phi(tk)" />, <img src="https://latex.codecogs.com/gif.latex?wk&space;=&space;\frac{tb-ta}{N-1}&space;w(\phi(tk))&space;\phi'(tk)" title="wk = \frac{tb-ta}{N-1} w(\phi(tk)) \phi'(tk)" />.

In this library, Eq.(1) can computed by the following code:

// Now we assume that a, b, w, N, t_a, t_b, and f are defined as Eq.(1).
auto deint = DEInt!real(a, b, (real x) => w(x), No.isExpDecay, N, t_a, t_b);

// compute Eq.(1)
real ans = deint.integrate((real x) => f(x));

• The default values of w, N, t_a, and t_b are (real x) => 1, 100, -5, and 5, respectively.
• If the integrand function f(x)w(x) is an exponential-decay function on |x| -> infinity, you should change the flag No.isExpDecay to Yes.isExpDecay.

For example:

• Integrate f(x) on (0, 1).

<img src="https://latex.codecogs.com/gif.latex?(2)&space;\int0^1&space;f(x)&space;dx&space;\approx&space;\int{-5}^{5}&space;f(\phi(t))&space;\phi'(t)&space;dt&space;\approx&space;\sum{k=0}^{99}&space;f(xk)&space;wk" title="(2) \int0^1 f(x) dx \approx \int{-5}^{5} f(\phi(t)) \phi'(t) dt \approx \sum{k=0}^{99} f(xk) wk" />

where

<img src="https://latex.codecogs.com/gif.latex?\phi(t)=\frac{1}{2}&space;\tanh(\frac{\pi}{2}&space;\sinh(t))+\frac{1}{2}" title="\phi(t)=\frac{1}{2} \tanh(\frac{\pi}{2} \sinh(t))+\frac{1}{2}" />

<img src="https://latex.codecogs.com/gif.latex?\phi'(t)=\frac{\pi}{4}&space;\frac{\cosh(t)}{\cosh^2(\frac{\pi}{2}\sinh(t))}" title="\phi'(t)=\frac{\pi}{4} \frac{\cosh(t)}{\cosh^2(\frac{\pi}{2}\sinh(t))}" />

and

<img src="https://latex.codecogs.com/gif.latex?tk&space;=&space;\frac{10}{99}k-5" title="tk = \frac{10}{99}k-5" />, <img src="https://latex.codecogs.com/gif.latex?xk&space;=&space;\phi(tk)" title="xk = \phi(tk)" />, <img src="https://latex.codecogs.com/gif.latex?wk&space;=&space;\frac{10}{99}&space;\phi'(tk)" title="wk = \frac{10}{99} \phi'(tk)" />.

// DEInt!real is a struct which computes x_k and w_k in advance.
auto int01 = DE!real(0, 1);

// When f(x) = x, int_0^1 x dx = 0.5
assert(int01.integrate((real x) => x).approxEqual(0.5));

// DEInt!real is reusable.
// When f(x) = x^^2, int_0^1 x^^2 dx = 1/3
assert(int01.integrate((real x) => x^^2).approxEqual(1/3.0));

• Integrate f(x) on (-inf, inf)

<img src="https://latex.codecogs.com/gif.latex?\int{-\infty}^{\infty}&space;f(x)&space;dx&space;\approx&space;\int{-5}^{5}&space;f(\phi(t))&space;\phi'(t)&space;dt&space;\approx&space;\sum{k=0}^{99}&space;f(xk)&space;wk" title="\int{-\infty}^{\infty} f(x) dx \approx \int{-5}^{5} f(\phi(t)) \phi'(t) dt \approx \sum{k=0}^{99} f(xk) wk" />

where

<img src="https://latex.codecogs.com/gif.latex?\phi(t)=\sinh(\frac{\pi}{2}\sinh(t))" title="\phi(t)=\sinh(\frac{\pi}{2}\sinh(t))" />

<img src="https://latex.codecogs.com/gif.latex?\phi'(t)=\frac{\pi}{2}\cosh(t)&space;\cosh(\frac{\pi}{2}\sinh(t))" title="\phi'(t)=\frac{\pi}{2}\cosh(t) \cosh(\frac{\pi}{2}\sinh(t))" />

and

<img src="https://latex.codecogs.com/gif.latex?tk&space;=&space;\frac{10}{99}k-5" title="tk = \frac{10}{99}k-5" />, <img src="https://latex.codecogs.com/gif.latex?xk&space;=&space;\phi(tk)" title="xk = \phi(tk)" />, <img src="https://latex.codecogs.com/gif.latex?wk&space;=&space;\frac{10}{99}&space;\phi'(tk)" title="wk = \frac{10}{99} \phi'(tk)" />.

// integration on [-inf, inf]
auto intII = DEInt!real(-real.infinity, real.infinity);

// Gaussian integral
assert(intII.integrate((real x) => exp(-x^^2)).approxEqual(sqrt(PI)));

• Integrate f(x)exp(-x) on (1, inf)

<img src="https://latex.codecogs.com/gif.latex?\int{1}^{\infty}&space;f(x)&space;\exp(-x)&space;dx&space;\approx&space;\int{-5}^{5}&space;f(\phi(t))&space;\phi'(t)&space;\exp(-\phi(t))&space;dt&space;\approx&space;\sum{k=0}^{99}&space;f(xk)&space;wk" title="\int{1}^{\infty} f(x) \exp(-x) dx \approx \int{-5}^{5} f(\phi(t)) \phi'(t) \exp(-\phi(t)) dt \approx \sum{k=0}^{99} f(xk) wk" />

where

<img src="https://latex.codecogs.com/gif.latex?\phi(t)&space;=&space;\exp(t-\exp(-t))+1" title="\phi(t) = \exp(t-\exp(-t))+1" />

<img src="https://latex.codecogs.com/gif.latex?\phi'(t)&space;=&space;(1+\exp(-t))&space;\exp(t-\exp(-t))" title="\phi'(t) = (1+\exp(-t)) \exp(t-\exp(-t))" />

and

<img src="https://latex.codecogs.com/gif.latex?tk&space;=&space;\frac{10}{99}k-5" title="tk = \frac{10}{99}k-5" />, <img src="https://latex.codecogs.com/gif.latex?xk&space;=&space;\phi(tk)" title="xk = \phi(tk)" />, <img src="https://latex.codecogs.com/gif.latex?wk&space;=&space;\frac{10}{99}&space;\phi'(tk)&space;\exp(-\phi(tk))" title="wk = \frac{10}{99} \phi'(tk) \exp(-\phi(tk))" />.

// integrate f(x)exp(-x) on (1, inf)
// Now, we know that the integrand f(x)exp(-x) decay exponentially.
auto intFI = DEInt!real(1, real.infinity, (real x) => exp(-x), Yes.isExpDecay);

// incomplete gamma function
assert(intFI.integrate((real x) => x).approxEqual(gammaIncompleteCompl(2, 1) * gamma(2)));

• Registered by Kazuki Komatsu
• 0.0.3 released 4 years ago
• k3kaimu/deint
• CC0
Authors:
• Kazuki Komatsu
Dependencies:
none
Versions:
 0.3.3 2019-Jan-01 0.3.2 2018-Dec-17 0.3.1 2018-Dec-17 0.3.0 2018-Dec-17 0.2.0 2018-Aug-13