tiny-autodiff 1.0.2
A tiny autograd library.
To use this package, run the following command in your project's root directory:
Manual usage
Put the following dependency into your project's dependences section:
<img src="imgs/icon-tautodiff.png" width="95" height="52" align="left"></img>
Tiny AutoDiff
A tiny autograd library. Implements backpropagation autodiff. It supports all you need to build small neural networks.
Library
Add library to your project using DUB:
dub add tiny-autodiff
Precision
Use the versions
configuration to specify the precision:
TAUTODIFF_USE_FLOAT
TAUTODIFF_USE_DOUBLE
TAUTODIFF_USE_REAL
// dub.sdl
versions "TAUTODIFF_USE_FLOAT"
// dub.json
versions: ["TAUTODIFF_USE_FLOAT"]
Example usage
Value
import rk.tautodiff;
auto a = value(2);
auto b = value(-3);
auto c = value(10);
auto f = value(-2);
auto e = a * b;
auto d = e + c;
auto g = f * d;
// backward
g.backward();
// check grad after backward
assert(g.grad == 1);
assert(f.grad == 4);
assert(d.grad == -2);
assert(e.grad == -2);
assert(c.grad == -2);
assert(b.grad == -4);
assert(a.grad == 6);
ChainSolver
Use ChainSolver
to solve equations step by step.
import rk.tautodiff;
// create solver
auto solver = ChainSolver(0); // 0 is initial value
// operations using the produced result
solver += 5; // 0 + 5 = 5
solver *= 2; // 3 * 2 = 6
// append new value and work with it
solver ~= solver / value(2);
assert(solver.data == 3);
// backward
solver.backward();
assert(solver.grad == 1);
// zero grad
solver.zeroGrad();
assert(solver.grad == 0);
// reset
solver.reset();
assert(solver.data == 0);
assert(solver.grad == 0);
// total length (allocated elements)
assert(solver.values.length == 4);
Tape
Create tapes
of equations and update the resulting value:
// init
auto tape = new Tape();
assert(tape.values == []);
assert(tape.values.length == 0);
assert(tape.locked == false);
assert(!tape.isLocked);
// d = a * b - c
auto a = 5.value;
auto b = 10.value;
auto c = 25.value;
auto d = a * b;
auto e = d - c;
assert(e.data == 25);
// push
tape.pushBack(a);
tape ~= b;
tape ~= [c, d, e];
assert(tape.values == [a, b, c, d, e]);
assert(tape.values.length == 5);
assert(tape.lastValue.data == 25);
// lock tape
tape.lock();
// tape ~= 24.value; // assert error: reset the tape to push new values
// modify value
a.data = 6;
// update tape
tape.update();
assert(tape.lastValue.data == 35);
// reset tape to push new values
tape.reset();
tape ~= 35.value; // good
Multi-layer perceptron
import rk.tautodiff;
import std.array : array;
import std.stdio : writefln;
import std.algorithm : map;
// define data
auto input = [ // binary
[0, 0, 0, 0], // 0
[0, 0, 0, 1], // 1
[0, 0, 1, 0], // 2
[0, 0, 1, 1], // 3
[0, 1, 0, 0], // 4
[0, 1, 0, 1], // 5
[0, 1, 1, 0], // 6
[0, 1, 1, 1], // 7
[1, 0, 0, 0], // 8
[1, 0, 0, 1], // 9
[1, 0, 1, 0], // 10
[1, 0, 1, 1], // 11
[1, 1, 0, 0], // 12
[1, 1, 0, 1], // 13
[1, 1, 1, 0], // 14
[1, 1, 1, 1], // 15
].map!(x => x.map!(y => y.value).array).array;
auto target = [ // 1: even, 0: odd
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
].map!(x => x.value).array;
// split train, test
auto input_train = input[0 .. 12];
auto input_test = input[12 .. $];
// define model
auto model = new MLP([4, 8, 1], &activateRelu, &activateSigmoid);
// define loss function
auto lossL2(Value[] preds)
{
import std.algorithm : reduce;
// voldemort type
struct L2Loss { Value loss; float accuracy; }
// mse loss
Value[] losses;
foreach (i; 0..preds.length) losses ~= (preds[i] - target[i]) * (preds[i] - target[i]);
auto dataLoss = losses.reduce!((a, b) => a + b) / preds.length;
// accuracy
float accuracy = 0.0;
foreach (i; 0..preds.length) accuracy += ((preds[i].data > 0.5) == target[i].data);
accuracy /= preds.length;
// return voldemort type with cost and accuracy
return L2Loss(dataLoss, accuracy);
}
// train
enum lr = 0.05;
enum epochs = 100;
foreach (epoch; 0..epochs)
{
// forward
Value[] preds;
foreach (x; input_train) preds ~= model.forward(x);
// loss
auto l2 = lossL2(preds);
// backward
model.zeroGrad();
l2.loss.backward();
// update
model.update(lr);
// debug print
if (epoch % 10 == 0) writefln("epoch %3s loss %.4f accuracy %.2f", epoch, l2.loss.data, l2.accuracy);
}
// test
foreach (i, x; input_test)
{
auto pred = model.forward(x)[0];
assert((pred.data > 0.5) == target[i].data);
}
Output:
epoch 0 loss 1.9461 accuracy 0.50
epoch 10 loss 0.1177 accuracy 0.75
epoch 20 loss 0.0605 accuracy 1.00
epoch 30 loss 0.0395 accuracy 1.00
...
epoch 90 loss 0.0010 accuracy 1.00
References
LICENSE
All code is licensed under the BSL license.
- Registered by Ki Rill
- 1.0.2 released 9 months ago
- rillki/tiny-autodiff
- BSL-1.0
- Copyright © 2023, rillki
- Authors:
- Dependencies:
- none
- Versions:
-
1.0.2 2024-Mar-24 1.0.1 2024-Feb-11 1.0.0 2024-Feb-03 ~main 2024-Mar-24 - Download Stats:
-
-
0 downloads today
-
0 downloads this week
-
0 downloads this month
-
3 downloads total
-
- Score:
- 1.0
- Short URL:
- tiny-autodiff.dub.pm